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ANALYSIS AND PRACTICAL USE OF FLEXIBLE BICGSTAB

JIE CHEN∗, LOIS CURFMAN MCINNES∗, AND HONG ZHANG∗

Abstract. A flexible version of the BiCGStab algorithm (FBiCGStab) for solving a linear sys-
tem of equations is analyzed. We show that under flexible preconditioning, the perturbation to the
outer residual norm is of the same order as that to the preconditioner. In addition, we formulate
a mathematically equivalent variant, FBiCGStab-R, in order to reduce the global synchronization
cost for performing inner product calculations. FBiCGStab-R is numerically stable and sometimes
far outperforms FBiCGStab if high accuracy of the solution is required. Both analysis and numer-
ical experiments show that a strong preconditioner is often favored for the practical use of flexible
BiCGStab. We demonstrate in a large-scale reacting flow application (PFLOTRAN) that the use
of flexible BiCGStab leads to significantly accelerated simulation time on extreme-scale computers
using O(104)–O(105) processor cores.
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1. Introduction. Flexible iterative methods [9, 14, 15, 26, 28, 38, 42] for solving
a linear system of equations are referred to as preconditioned Krylov methods where
the preconditioner may change across iterations. The flexible preconditioning strategy
is also known under various terms such as inexact, nonlinear, or variable precondi-
tioning. A representative scenario is that the preconditioning requires a linear solve
with a second iterative method, in which case “inner iterations” are used to mean
preconditioning and “outer iterations” are used to mean the flexible Krylov method
itself. Flexible methods are an important class of methods that offer several advan-
tages over the use of a fixed preconditioner, one of which is the flexibility to balance
the accuracy of the preconditioning solves and the convergence of the outer Krylov
iterations in order to reduce the total computational cost. Furthermore, in large-scale
applications, the changing landscape of both scientific needs (complex physical models
and couplings) and emerging extreme-scale computing systems gives rise to practical
preconditioners that are hierarchical or nested [5, 6, 10, 16, 20, 31]. Many of these
emerging preconditioners benefit from inexact inner solves and thus encourage the use
of flexible Krylov methods.

Among many proposed flexible methods, flexible GMRES (abbreviated as FGM-
RES [28]) is the most frequently used in practice. Its wide use is probably linked
to the robustness that results from the long-term recurrence and the global orthog-
onality. Compared with standard GMRES [30], even though the traditional notion
of a Krylov subspace is lost, FGMRES computes an orthonormal basis of a subspace
within which an optimal residual is sought. Hence, FGMRES still enjoys the residual
norm minimization property, and it often shows a satisfactory convergence behavior.
On the other hand, in other flexible methods with short-term recurrences, such as in-
exact PCG [15], flexible QMR [38] and flexible BiCG [42], the global (bi)orthogonality
is lost, and the convergence behavior is generally unpredictable unless the inner solves
are sufficiently accurate that orthogonality is nearly preserved. An idea to improve
the robustness is to explicitly perform the orthogonalization as proposed for a vari-
ant of the flexible CG algorithm [26]. On the other hand, several analyses of flexible
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methods, using a larger Krylov subspace that includes the Arnoldi vectors, indicate
that the convergence behavior can be maintained with respect to the fixed precondi-
tioning case if the perturbation to the preconditioner grows inversely with the current
residual norm [11, 32, 33].

BiCGStab [39] is a widely used Krylov method. In many applications, BiCGStab
outperforms GMRES in terms of both solution time and memory usage, and it be-
comes the de facto method of choice for practitioners. Although BiCGStab is akin
to BiCG [12], which generates two sets of biorthogonal residual vectors that natu-
rally form two associated Krylov subspaces, the convergence behavior of BiCGStab
is harder to describe because the residual vectors alone do not span the Krylov sub-
space that contains them. BiCGStab can be understood as a member of a family of
induced dimension reduction (IDR) methods whereby the generated residuals belong
to a nested sequence of subspaces that are recursively defined [34, 35, 36].

Motivated by an important reacting flow application PFLOTRAN [18, 19], for
which BiCGStab has been predominantly used as the linear solver, we study in this
paper the flexibly preconditioned BiCGStab algorithm (abbreviated as FBiCGStab)
as an effort to improve the solution time. Detailed information about PFLOTRAN
will be introduced in Section 5. FBiCGStab was initially proposed in [42], and it was
recently cast under the framework of flexible variants of IDR methods [40]. However,
little is known about convergence properties. The goal of this paper is to analyze
the behavior of the method and to provide guidance on its practical use. We do not
study the convergence guarantee of the method, but we argue that the convergence
behavior is close to that of the fixed preconditioning case if the perturbation to the
preconditioner is relatively small. Because of the loose connection of BiCGStab with
the associated Krylov subspace, this analysis differs from that for other flexible Krylov
methods (see [11, 32, 33]). Rather, we adopt a geometric argument on the iterates
and show that the perturbation to the relative residual norm of the outer iterations
is of the same order as that of the inner iterations. Interestingly, this result can lead
to a similar conclusion as that in [11, 32, 33]; that is, the convergence behavior of
the flexible method can be maintained by relaxing the accuracy requirement of the
preconditioning solves as the outer residual norm decreases.

The efficiency of parallelism is of particular importance for solving large-scale
linear systems on high-performance computers. Often the computation of inner prod-
ucts and norms constitutes the bottleneck of iterative solvers, because they require
global synchronizations on distributed-memory machines [2, 7, 13, 24, 37, 41, 43]. The
scaling of the solver starts to deteriorate when the number of processor cores increases
beyond O(10, 000). Thus, we formulate an alternative version of FBiCGStab, namely,
FBiCGStab-R, by grouping the inner product calculations in order to reduce the num-
ber of global synchronizations. This mathematically equivalent variant will be useful
on emerging extreme-scale computers when the cost of computing inner products is
high, for example, when a perfect load balance is difficult to achieve among proces-
sors and thus a fair amount of time is spent on the synchronization for performing
collective operations. Empirical study shows that FBiCGStab-R is numerically stable
and sometimes performs far better than FBiCGStab if high accuracy of the solution
is sought. Similar efforts have been made on BiCGStab (the fixed preconditioning
case), and numerical stability was seen within floating-point precision [8, 44], but we
demonstrate that FBiCGStab-R is stable up to double precision.

The rest of the paper is organized as follows. With a brief derivation of FBiCGStab,
Section 2 analyzes the behavior of the residual norm under flexible preconditioning.
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Section 3 presents FBiCGStab-R and discusses its numerical behavior. Several nu-
merical examples are shown in Section 4 to demonstrate the advantage of using a
strong preconditioner. Under this guideline, Section 5 presents the successful use of
FBiCGStab with multigrid preconditioners in PFLOTRAN. Concluding remarks are
given in Section 6.

2. Algorithm and analysis. The following is the standard unpreconditioned
BiCGStab algorithm for solving a linear system

Ax = b,

using x0 as the initial guess [29].

1: r0 = b−Ax0; r̄0 arbitrary
2: p0 = r0

3: for j = 0, 1, . . . until convergence do
4: αj = (rj , r̄0)/(Apj , r̄0)
5: sj = rj − αjApj
6: ωj = (Asj , sj)/(Asj , Asj)
7: xj+1 = xj + αjpj + ωjsj
8: rj+1 = sj − ωjAsj
9: βj = (rj+1, r̄0)/(rj , r̄0) · αj/ωj

10: pj+1 = rj+1 + βj(pj − ωjApj)
11: end for

The coefficient iterates αj and βj are derived based on their counterparts in BiCG
for updating the residual vectors and the search direction vectors. One can show that
αj makes sj ⊥ r̄0 and βj makes pj+1 ⊥ r̄0 for all j. Furthermore, ωj is defined to
minimize the 2-norm of the residual vector rj+1.

When the algorithm is used with a preconditioner M ≈ A, the right precondi-
tioning is equivalent to solving the system

AM−1y = b, y = Mx.

One way to derive the preconditioned iteration is, in the above unpreconditioned
version, to replace the symbol A by AM−1 and xj by yj , and then substitute yj
back by Mxj . This introduces two auxiliary vectors p̃j = M−1pj and s̃j = M−1sj ,
which are the only computations that require the preconditioner. We summarize this
preconditioned version in Algorithm 1. It is the same as the one presented in [42].

One would also like to consider left preconditioning, where M−1 is applied to
the left of the system Ax = b. After a change of variables, the left preconditioned
version is almost the same as Algorithm 1, except that the two inner products in line 8
are changed to the ones using the (MMT )−1-norm. In this case, ωj minimizes the
(MMT )−1-norm of rj+1. Compared with right preconditioning, left preconditioning
incurs two more applications of the preconditioner in each iteration, thus increasing
the computational cost. Therefore, we do not consider left preconditioning in this
paper.

An iterative method can be used to compute p̃j in line 4 and s̃j in line 7 of
Algorithm 1, but the iterations may not run to full accuracy. In this case, Algorithm 1
becomes the flexible version of BiCGStab. The computed iterates p̃j and s̃j under
inexact preconditioning will carry on their error to subsequent iterations. To gauge
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Algorithm 1 Right preconditioned BiCGStab / Flexible BiCGStab

1: r0 = b−Ax0; r̄0 arbitrary
2: p0 = r0

3: for j = 0, 1, . . . until convergence do
4: p̃j = M−1pj
5: αj = (rj , r̄0)/(Ap̃j , r̄0)
6: sj = rj − αjAp̃j
7: s̃j = M−1sj
8: ωj = (As̃j , sj)/(As̃j , As̃j)
9: xj+1 = xj + αj p̃j + ωj s̃j

10: rj+1 = sj − ωjAs̃j
11: βj = (rj+1, r̄0)/(rj , r̄0) · αj/ωj
12: pj+1 = rj+1 + βj(pj − ωjAp̃j)
13: end for

the amplification of error, we are interested in the situation that the relative residual
of the inner solves with M is upper bounded by a small tolerance ε. That is, if we
use an underline to denote the actual iterates with errors, we assume that

‖pj −Mp̃j‖ ≤ ε‖pj‖ and ‖sj −Ms̃j‖ ≤ ε‖sj‖. (2.1)

In the following, we characterize the relative difference between rj+1 and rj+1 under

Condition (2.1).

The analysis is based on the fact that the coefficient iterates αj , βj , and ωj
are computed such that the inaccuracy incurred in the preconditioning solves is not
“adversely” accumulated to affect outer iterations. For this, we need the following
observations. They are trivially correct in the fixed preconditioned case but are also
true when a flexible preconditioner is used. The proof is simple and thus omitted.

Proposition 2.1. The iterates in Algorithm 1 have the following properties:

(i) The vector rj+1 is the residual; that is, rj+1 = b−Axj+1.
(ii) Consider that sj is a function of αj; then the definition of αj in line 5 makes

sj ⊥ r̄0.
(iii) Consider that pj+1 is a function of βj; then the definition of βj in line 11

makes pj+1 ⊥ r̄0.
(iv) Consider that rj+1 is a function of ωj; then the definition of ωj in line 8

minimizes ‖rj+1‖2.

In light of these observations, we have the following two lemmas. They imply
that the perturbation to the vector x−αy, where the scalar α is used to satisfy some
orthogonality or minimization property, is of the same order as the perturbations to
the vectors x and y. We use ∠(x, y) to denote the acute angle between the two vectors;
that is, |(x, y)| = ‖x‖‖y‖ cos∠(x, y). Hence, cos∠(x, y) is always nonnegative.

Lemma 2.2. Given a vector r, let z = x − αy and z = x − αy, where α =
(x, r)/(y, r) and α = (x, r)/(y, r). If there exist εx, εy such that εy < cos∠(y, r) and
that

‖x− x‖ ≤ εx‖x‖ and ‖y − y‖ ≤ εy‖y‖,
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then ‖z − z‖ ≤ εz‖z‖ with

εz =

εx +

√√√√√ε2x +

εx sin2(θy + ∠(y, r))

cos(θy + ∠(y, r))
+ εy

cos∠(x, r)

cos∠(y, r)[
√

1− ε2y cos∠(y, r)− εy sin∠(y, r)]

2

sin∠(x, y)
,

(2.2)
where θy = arcsin εy. Furthermore, denote ε = max{εx, εy}. If ∠(x, y) and ∠(x, r)
are lower bounded by θ and φ, respectively, and ∠(y, r) is upper bounded by ψ, then

εz ≤ C(θ, φ, ψ, ε) · ε with lim
ε→0

C(θ, φ, ψ, ε) =

1 +

√
1 +

[
sin2 ψ

cosψ
+

cosφ

cos2 ψ

]2

sin θ
, (2.3)

where C is defined based on the expression of εz in (2.2), with ∠(x, y), ∠(x, r), ∠(y, r),
εx, and εy being replaced by θ, φ, ψ, ε, and ε, respectively, and then being divided by
ε.

Proof. First consider the triangle defined by z, x and αy. Clearly,

‖z‖ ≥ ‖x‖ sin∠(x, y). (2.4)

Then consider

‖z − z‖ ≤ ‖x− x‖+ ‖αy − αy‖ with ‖x− x‖ ≤ εx‖x‖. (2.5)

We proceed to bound the norm of w = αy − αy. Let w be split into two orthogonal
components, w‖r and w⊥r, where the former is parallel to r and the latter orthogonal
to r. Then

‖αy − αy‖2 = ‖w‖2 = ‖w‖r‖2 + ‖w⊥r‖2. (2.6)

Since both z and z are orthogonal to r, performing an inner product with r on both
sides of w = x− x+ z − z yields (w, r) = (x− x, r). Then,

‖w‖r‖ =
|(w, r)|
‖r‖

=
|(x− x, r)|
‖r‖

≤ ‖x− x‖ ≤ εx‖x‖. (2.7)

To find an upper bound for ‖w⊥r‖, we use a geometric argument; see Figure 2.1.
Although the figure shows 3D geometry, the argument applies to vectors of any di-
mension. The plane P , passing through the origin, represents a space containing all
vectors orthogonal to r. The markers E, G′, D, B, C, and G all lie on P . The line
AE is orthogonal P , thus parallel to r. Imagine that the vector x starts from the
origin and ends at A. The vector y then starts from A and points to the direction

represented by
−−→
AB. Therefore, the vector −αy ends at B because z = x − αy lie on

P . Hence,
−−→
EB represents −(αy)⊥r. Because ‖x−x‖ ≤ εx‖x‖, the vector x also starts

from the origin but can end anywhere within εx‖x‖ distance to A, indicated by the
dashed circle. Because ‖y−y‖ ≤ εy‖y‖, the vector y, if translated to start from A, can
point to any direction within the cone ∠CAD that has a half angle θy = arcsin εy. The
lines FG and F ′G′ are tangent to the circle and parallel to AC and AD, respectively.

Thus,
−−→
FG and

−−−→
F ′G′ are two examples of the vector −αy. Hence, the maximum length
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Fig. 2.1. Geometric configuration for upper bounding ‖w⊥r‖.

of (αy−αy)⊥r occurs when (αy)⊥r and (αy)⊥r are linearly dependent, that is, when
the markers E, B, and G (or G′) are on a line. Moreover, the maximum length occurs
when −αy is the line that starts from F and ends at G, because εy < cos∠(y, r)
implies that θy + ∠(y, r) is acute. Then, the length is that of the line segment FG
projected to P minus that of the line segment AB projected to P . Specifically,

‖w⊥r‖ ≤ [εx‖x‖ sin(θy + ∠(y, r)) + ‖x‖ cos∠(x, r)] · [tan(θy + ∠(y, r))]

− ‖x‖ cos∠(x, r) tan∠(y, r).

Expanding the tangent of two angles, we have

‖w⊥r‖ ≤ εx‖x‖
sin2(θy + ∠(y, r))

cos(θy + ∠(y, r))
+

‖x‖ cos∠(x, r) tan θy
cos∠(y, r)[cos∠(y, r)− tan θy sin∠(y, r)]

.

Then, with tan θy = εy/
√

1− ε2y, we obtain

‖w⊥r‖ ≤ εx‖x‖
sin2(θy + ∠(y, r))

cos(θy + ∠(y, r))
+

εy‖x‖ cos∠(x, r)

cos∠(y, r)[
√

1− ε2y cos∠(y, r)− εy sin∠(y, r)]
.

(2.8)
Combining (2.4), (2.5), (2.6), (2.7), and (2.8) gives (2.2). The result (2.3) follows
from the fact that εz is a decreasing function of ∠(x, y) and ∠(x, r) and an increasing
function of ∠(y, r).

Lemma 2.3. Let z = x − αy and z = x − αy, where α = (x, y)/‖y‖2 and

α = (x, y)/‖y‖2. If (x, y) and (x, y) have the same sign and there exist εx, εy such
that εx + εy < 1 and that

‖x− x‖ ≤ εx‖x‖ and ‖y − y‖ ≤ εy‖y‖,

then |α− α| ≤ εα|α| and ‖z − z‖ ≤ εz‖z‖ with

εα = (εx + εy)(1 + εy)

{
1 + (1 + εx)

[
εx + εy

2
√

1− (εx + εy)2
+ tan∠(x, y)

]}
(2.9)
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and

εz = (εx + εy)(1 + εx) +

εx + εy cos∠(x, y) + (εx + εy) cos∠(x, y)

[
1 +

(1+εx)(εx+εy)

2
√

1−(εx+εy)2

]
sin∠(x, y)

.

(2.10)
Furthermore, denote ε = max{εx, εy}. If ∠(x, y) is lower bounded by θl and upper
bounded by θu, then

εα ≤ Cα(θu, ε) · ε with lim
ε→0

Cα(θ, ε) = 2 + 2 tan θ (2.11)

and

εz ≤ Cz(θl, ε) · ε with lim
ε→0

Cz(θ, ε) =

(
2 +

1 + 3 cos θ

sin θ

)
, (2.12)

where Cα is defined based on the expression of εα in (2.9), with ∠(x, y), εx, and εy
being replaced by θ, ε, and ε, respectively, and then being divided by ε. The same is
used to define Cz based on (2.10).

Proof. First we have

‖z − z‖ ≤ ‖x− x‖+ ‖αy − αy‖
≤ ‖x− x‖+ ‖α(y − y)‖+ ‖(α− α)y‖
≤ εx‖x‖+ εy‖αy‖+ ‖(α− α)y‖. (2.13)

Because α and α have the same sign, we obtain

‖(α− α)y‖
‖αy‖

=

∣∣∣∣‖y‖‖y‖ − ‖αy‖‖αy‖

∣∣∣∣ .
Then, using the fact that |‖y‖/‖y‖ − 1| ≤ εy, we get

‖(α− α)y‖ ≤ ‖αy‖
(
εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣) (2.14)

and

|α− α|
|α|

≤ ‖y‖
‖y‖

(
εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣) ≤ (1 + εy)

(
εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣) . (2.15)

Because z ⊥ y and z ⊥ y, the following equalities are useful:

‖z‖ = ‖x‖ sin∠(x, y), ‖αy‖ = ‖x‖ cos∠(x, y), (2.16)

and similarly for the underlined counterparts. Hence, we proceed to bound∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣ =

∣∣∣∣1− ‖x‖‖x‖ cos∠(x, y)

cos∠(x, y)

∣∣∣∣ .
To simplify notation, let ∠(x, y) = β and ∠(x, y) = β + δ for some δ. Then∣∣∣∣1− cos(β + δ)

cosβ

∣∣∣∣ = |(1− cos δ) + sin δ tanβ|

=

∣∣∣∣(sin δ)(tan
δ

2
+ tanβ

)∣∣∣∣ ≤ | sin δ|(1

2
| tan δ|+ tanβ

)
.
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Let θx be the angle between x and x, and similarly for θy. Because ‖x− x‖ ≤ εx‖x‖
with εx < 1, θx is acute. Similarly, so is θy. Note that ‖x‖ sin θx ≤ ‖x− x‖ ≤ εx‖x‖;
therefore, sin θx ≤ εx, and similarly sin θy ≤ εy. Then, sin θx ≤ εx <

√
1− ε2y ≤ cos θy,

which indicates that θx + θy is also acute. Thus, the fact that |δ| ≤ θx + θy leads to
sin |δ| ≤ sin θx + sin θy ≤ εx + εy. Therefore∣∣∣∣1− cos(β + δ)

cosβ

∣∣∣∣ ≤ (εx + εy)

[
εx + εy

2
√

1− (εx + εy)2
+ tan∠(x, y)

]
=: A.

By noting that ∣∣∣∣1− ‖x‖‖x‖
∣∣∣∣ ≤ εx =: B,

we obtain ∣∣∣∣1− ‖x‖‖x‖ cos∠(x, y)

cos∠(x, y)

∣∣∣∣ ≤ B +A+AB,

which gives∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣ ≤ εx + (1 + εx)(εx + εy)

[
εx + εy

2
√

1− (εx + εy)2
+ tan∠(x, y)

]
. (2.17)

Combining (2.15) and (2.17) gives (2.9); combining (2.13), (2.14), (2.16), and (2.17)
gives (2.10). The results (2.11) and (2.12) follow from the fact that εα is an increasing
function of ∠(x, y) and εz is a decreasing function of ∠(x, y).

Using the above two lemmas, we have the following result. It states that the
relative perturbation to the outer residual norm is of the same order as the relative
residual norm in the inner solves.

Theorem 2.4. If for all j in any finite number of outer iterations where break-
down does not occur, ∠(rj , r̄0) 6= 0, ∠(rj , Ap̃j) 6= 0, ∠(rj+1, pj − ωjAp̃j) 6= 0 and
∠(sj , As̃j) 6= 0, then under Condition (2.1),

‖rj − rj‖
‖rj‖

= O(ε).

Proof. To facilitate presentation, we define err(a) := ‖a − a‖/‖a‖ for any vector
or scalar a. We first observe that

‖Ap̃j −Ap̃j‖
‖Ap̃j‖

=
‖AM−1(pj −Mp̃j)‖

‖AM−1pj‖
≤ κ
‖pj −Mp̃j‖
‖pj‖

≤ κ

(
‖pj − pj‖
‖pj‖

+
‖pj −Mp̃j‖
‖pj‖

)
≤ κ

(
‖pj − pj‖
‖pj‖

+ ε
‖pj‖
‖pj‖

)
,

where κ denotes the condition number of AM−1. Since the big-O notation is used
for sufficiently small ε, the above observation means that if err(pj) = O(ε), then
err(Ap̃j) = O(ε). Similarly, if err(sj) = O(ε), then err(As̃j) = O(ε).

We now show the theorem by induction on err(rj) and err(pj), based on the two
preceding lemmas. The conditions in the theorem are used to ensure the applicability
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of the lemmas. At j = 0, r0 and p0 is unchanged under variable preconditioning. If
err(rj) = O(ε) and err(pj) = O(ε), then because err(Ap̃j) = O(ε), we have err(sj) =
O(ε) by Lemma 2.2. Consequently, err(As̃j) = O(ε), and thus err(rj+1) = O(ε) by
Lemma 2.3.

Now consider pj+1 = rj+1 + βjzj , where zj = pj − ωjAp̃j . Both err(pj) and
err(Ap̃j) are O(ε). On the other hand, err(ωj) is also O(ε) according to Lemma 2.3,
because we have shown that both err(sj) and err(As̃j) are O(ε). Hence, err(zj) =
O(ε). Then by invoking Lemma 2.2 again we have err(pj+1) = O(ε), which completes
the induction.

Theorem 2.4 considers the perturbation of the residual in the relative sense. As
a corollary, a result for the absolute perturbation is given next. Instead of a fixed
tolerance ε for all the inner solves, we allow the tolerance, denoted by εj , to vary
in each outer iteration j. The result indicates a reciprocal relationship between the
residual norm ‖rj‖ and εj .

Corollary 2.5. Let the relative inner tolerance ε depend on the outer iterations
indexed by j, that is,

‖pj −Mp̃j‖ ≤ εj‖pj‖ and ‖sj −Ms̃j‖ ≤ εj‖sj‖.

Under the condition of Theorem 2.4, if the residual norm ‖rj‖ is monotonically de-
creasing, then for any δ there exists a constant C such that if

εj =
Cδ

‖rj‖
,

then ‖rj − rj‖ ≤ δ.
Proof. Note that Theorem 2.4 is proved by induction on j. When εj is monoton-

ically increasing and when εj is sufficiently small, a stronger conclusion is that there
exists a C ′ that is independent of j such that

err(rj) ≤ C ′εj , (2.18)

because in the right-hand side εj can always be relaxed later by changing it to εj+1.
Rewriting (2.18), we obtain ‖rj − rj‖ ≤ C ′εj‖rj‖. Therefore, if we let εj = Cδ/‖rj‖
by using some C such that C ′C ≤ 1 and that Cδ/‖rj‖ is sufficiently small to trigger
the validity of (2.18), we immediately have ‖rj − rj‖ ≤ δ.

3. A mathematically equivalent variant. Each iteration of Algorithm 1 re-
quires five inner product calculations: (Ap̃j , r̄0), (As̃j , s̃j), (As̃j , As̃j), (rj+1, r̄0), and
the hidden ‖rj+1‖ for convergence tests. A straightforward parallel implementation
(using MPI [25], for example) will incur four calls of MPI Allreduce to sum the local
inner products (the two inner products (As̃j , s̃j) and (As̃j , As̃j) are obviously com-
puted together and thus require only one MPI Allreduce). Because inner product
calculations are expensive on distributed-memory machines with a large number of
processors, it is desirable that the calculations be grouped together while the numer-
ical behavior of the iterations is maintained.

Following this guideline, we rearrange the computation of βj and ‖rj+1‖ so that
they can be computed together with ωj . Because sj ⊥ r̄0, line 10 of Algorithm 1 gives

(rj+1, r̄0) = −ωj(As̃j , r̄0). (3.1)

Then, together with the definition of αj in line 5, we obtain

βj = −(As̃j , r̄0)/(Ap̃j , r̄0).



10 J. CHEN, L.C. MCINNES, AND H. ZHANG

This makes the computation of βj independent of rj+1, and thus it can be moved
ahead before rj+1 is available. Next, consider the residual norm ρj+1 = ‖rj+1‖.
Because

(rj+1, rj+1) = (sj , sj)− 2ωj(As̃j , sj) + ω2
j (As̃j , As̃j) = (sj , sj)− ωj(As̃j , sj),

the reliance of the computation of ρj+1 on rj+1 can also be eliminated. Thus, ρj+1

can be computed immediately after βj .
To obtain cleaner notation, we define tj = As̃j , and vj = Ap̃j . Then, the discussed

modifications lead to Algorithm 2. For clarity, we insert the convergence test in
line 14 to show the use of ρj+1. Because of the simple but equivalent rearrangement
of the iterate updates, this alternative version is equivanlent to Algorithm 1 in exact
arithmetic, as the following proposition states.

Proposition 3.1. Algorithm 2 is mathematically equivalent to Algorithm 1.

Algorithm 2 FBiCGStab-R: Flexible BiCGStab with reduced synchronizations

1: r0 = b−Ax0; r̄0 arbitrary
2: p0 = r0

3: for j = 0, 1, . . . until convergence do
4: p̃j = K−1pj , vj = Ap̃j
5: compute (rj , r̄0), (vj , r̄0)
6: then αj = (rj , r̄0)/(vj , r̄0)
7: sj = rj − αjvj
8: s̃j = K−1sj , tj = As̃j
9: compute (sj , sj), (tj , sj), (tj , tj), (tj , r̄0)

10: then ωj = (tj , sj)/(tj , tj)
11: βj = −(tj , r̄0)/(vj , r̄0)
12: ρj+1 = [(sj , sj)− ωj(tj , sj)]1/2
13: xj+1 = xj + αj p̃j + ωj s̃j
14: if ρj+1 < tol return
15: rj+1 = sj − ωjtj
16: pj+1 = rj+1 + βj(pj − ωjvj)
17: end for

Compared with Algorithm 1, Algorithm 2 requires the same number of matrix-
vector multiplications and preconditioning steps. The difference is that the number of
calls to MPI Allreduce is reduced to two per iteration (lines 5 and 9), at the expense
of computing one more inner product. On distributed-memory machines with a large
number of processors, the cost of the extra inner product calculation is likely to
be compensated by the saving in the reduced number of global synchronizations.
Thus, the alternative version can be useful when the latency cost of synchronization
is high. For example, a perfect load balance is difficult to achieve for unstructured
meshes. Then, the matrix-vector multiplications can have a large variance in finishing
time, and this contributes to the nonnegligible latency in MPI Allreduce for inner
product calculations. Another situation is the solution of multiphysics problems where
each subproblem is solved independently but simultaneously. The concurrency of the
processors may be affected by the imbalanced time cost of handling each subproblem.
Reducing the number of synchronizations is thus helpful in these scenarios.

As is well known, when the iterations are rearranged, the numerical behavior of an
iterative algorithm may change even if the rearrangement is done in a mathematically
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equivalent way. Based on Algorithm 2, one may want to further reduce the number
of inner product calculations and the calls to MPI Allreduce, but it is easy to result
in an algorithm that is unstable. We consider one seemingly natural, but in fact
dangerous, modification here. From the relation (3.1), one can eliminate the inner
product (rj , r̄0) for computing αj :

αj = −ωj−1(tj−1, r̄0)/(vj , r̄0), (3.2)

because both ωj−1 and (tj−1, r̄0) have been computed in the previous iteration. How-
ever, this modification is numerically unstable. A later experiment shows that in
Algorithm 2 the residual norm ‖rj+1‖ is able to decrease to machine precision, but
using (3.2) makes ‖rj+1‖ stagnate at a certain point. We speculate that the iterations
are sensitive to the numerical orthogonality between sj and r̄0. In both Algorithms 1
and 2, orthogonality is ensured because of the straightforward computation of αj ;
however, when computing αj using (3.2) the loss of orthogonality is accumulated be-
cause the computation of (rj+1, r̄0) uses only the part (−ωjtj , r̄0) but misses the part
(sj , r̄0). When the loss of orthogonality reaches the level of the current residual norm,
the residual is unable to further decrease.

Algorithms 1 and 2 (and even the unstable version using (3.2)) behave almost the
same at the beginning, because the differences of the residuals across different versions
are orders of magnitude smaller than the residual itself. Only when the residual
decreases to a certain level do their behaviors become distinguishable. Nevertheless,
the difference usually does not affect the convergence trend. Sometimes, however,
Algorithm 2 works surprisingly much better than Algorithm 1, as shown in a later
experiment. The reason is unclear, but this behavior implies that even outside the
regime of parallel computing, Algorithm 2 can be a useful alternative to Algorithm 1
when one seeks a solver of optimal performance.

4. Numerical examples. To empirically study the effectiveness of flexible pre-
conditioning, we consider the linear system arising from a discretization of the PDE
(adopted from [28]):

−∆u+ γx · ∇u+ βu = f (4.1)

with zero Dirichlet boundary condition. The linear system can be made indefinite
and/or unsymmetric by changing the parameters γ and β. In this study we discretized
the domain into a regular grid of size n1 × n2 × n3 with spacing h = 1/n1 and
set γ = 4/h to make the problem unsymmetric. We varied the parameter β to
include indefinite cases, and thus we experimented with problems of different levels of
difficulty. The right-hand side was chosen to be the vector of all ones, with the initial
guess being zero. As a common practice in parallel solvers, if no specific preconditioner
is mentioned, an iterative method (including the case of being used for inner iterations)
was always preconditioned by block Jacobi/ILU(0), where each block was handled
by one processor. The experiments were conducted on the supercomputer Jaguar
(introduced in the next section).

We tested with several β values; Table 4.1 shows the results of three representative
cases. As β decreases, the problem becomes harder and harder to solve. In the
first case, β = 0.01/h2, the system is positive definite; but in the next two cases,
β = −0.4/h2 and −0.6/h2, the system is indefinite. Figure 4.1 shows the convergence
history of BiCGStab and GMRES. These results were obtained on a 256× 256× 256
grid using 16,384 processors. The restart cycle for GMRES was 30. The residual
tolerance and the maximum number of iterations were 1e-8 and 200, respectively.
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Fig. 4.1. Convergence of BiCGStab and GMRES for three β’s (no inner iterations).

To be compared are BiCGStab, FBiCGStab/BiCGStab, GMRES, and FGM-
RES/GMRES, where FBiCGStab/BiCGStab means FBiCGStab is preconditioned by
BiCGStab, and similarly for FGMRES/GMRES. The implementation of FBiCGStab
was according to Algorithm 1. In both of the flexible methods, the stopping criterion
for the inner iterations was either a residual tolerance or a fixed number of iterations.
The two major comparison metrics are the number of matrix-vector multiplications
(MatMult, column 4) and the number of calls to MPI Allreduce (Allreduce, column
5). The number of floating-point operations (Flops, column 6) for computing the
inner products is listed for reference but should not be used for comparison because
(i) the synchronization cost is much higher than that of floating-point operations and
(ii) GMRES requires long term recurrence (orthogonalization) whereas BiCGStab
does not. The wall-clock time is also listed, but note that the fluctuations in the
use of a supercomputer and in the communication latency are factors that affect the
actual running time.

Several important observations are made based on the data in Table 4.1 and other
experiments with intermediate β values that are not shown in the table. First, for
this set of test cases, the GMRES family in general performs better when the system
is relatively easy to solve; but as the difficulty level increases, the BiCGStab family
significantly outperforms the GMRES family. One sees that in the first case GMRES
is the best solver, whereas in the second case it failed to converge to the required
tolerance but BiCGStab did converge. In the second case, however, the fastest solver is
still in the GMRES family. Nevertheless, when moving to the third case, FBiCGStab
with an inner tolerance stopping criterion clearly wins over all other solvers. This
interesting phenomenon indicates that even for the same problem, different solvers
may have a significantly different performance profile as the problem parameters vary.

Second, for a flexible method, using a fixed number of inner iterations can some-
times achieve excellent performance; but as the problem becomes harder and harder,
it is difficult to specify an appropriate number a priori to ensure the convergence of
the outer iterations. One sees that in the first case, using a fixed number of inner it-
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Table 4.1
Solution summary of (4.1) with three choices of β. Arrows point to the fastest run.

Outer Time
MatMult

Inner Product
β = 0.01/h2 Iter. (sec×10−1) Allreduce Flops×105
BiCGStab 21 1.132 42 84 3.010
FBiCGStab, inner rtol = 1e-3 2 1.397 58 120 4.246
FBiCGStab, inner rtol = 1e-2 2 1.335 44 92 3.233
FBiCGStab, inner rtol = 1e-1 4 1.364 54 116 4.037
FBiCGStab, inner max it = 5 2 1.131 44 92 3.233
FBiCGStab, inner max it = 10 1 1.147 40 82 2.910
FBiCGStab, inner max it = 20 1 1.226 46 94 3.334
GMRES 29 0.874 29 58 9.494 ←
FGMRES, inner rtol = 1e-3 3 1.122 40 83 6.081
FGMRES, inner rtol = 1e-2 4 7.200 37 78 4.240
FGMRES, inner rtol = 1e-1 7 1.153 38 83 3.292
FGMRES, inner max it = 5 6 1.072 36 78 3.130
FGMRES, inner max it = 10 3 1.066 33 69 4.237
FGMRES, inner max it = 20 2 1.065 40 82 8.720

β = −0.4/h2 ×100 ×106
BiCGStab 105 0.356 210 420 1.505
FBiCGStab, inner rtol = 1e-3 2 0.668 438 880 3.144
FBiCGStab, inner rtol = 1e-2 2 0.499 270 544 1.948
FBiCGStab, inner rtol = 1e-1 6 0.832 586 1184 4.225
FBiCGStab, inner max it = 5 fail - - - -
FBiCGStab, inner max it = 10 fail - - - -
FBiCGStab, inner max it = 20 25 2.517 2050 4150 14.800
GMRES fail - - - -
FGMRES, inner rtol = 1e-3 3 1.556 1165 2298 37.890
FGMRES, inner rtol = 1e-2 4 1.062 803 1586 25.550
FGMRES, inner rtol = 1e-1 7 0.791 560 1113 17.160
FGMRES, inner max it = 5 26 0.282 156 338 1.893
FGMRES, inner max it = 10 14 0.278 154 322 2.134 ←
FGMRES, inner max it = 20 12 0.373 252 516 5.861

β = −0.6/h2 ×101 ×107
BiCGStab fail - - - -
FBiCGStab, inner rtol = 1e-3 2 0.951 8314 16632 5.962
FBiCGStab, inner rtol = 1e-2 2 0.572 5024 10052 3.605 ←
FBiCGStab, inner rtol = 1e-1 15 3.564 30120 60270 21.560
FBiCGStab, inner max it = 5 fail - - - -
FBiCGStab, inner max it = 10 fail - - - -
FBiCGStab, inner max it = 20 fail - - - -
GMRES fail - - - -
FGMRES, inner rtol = 1e-3 5 5.291 51670 101680 169.600
FGMRES, inner rtol = 1e-2 5 4.589 41800 82259 136.560
FGMRES, inner rtol = 1e-1 7 3.903 37757 74305 123.730
FGMRES, inner max it = 5 fail - - - -
FGMRES, inner max it = 10 fail - - - -
FGMRES, inner max it = 20 fail - - - -
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erations as the stopping criterion is in general preferable to using a residual tolerance.
This is also true in the second case for the FGMRES solvers. For the FBiCGStab
solvers, however, the situation is completely opposite. Moving to the third case, none
of the solvers using a fixed number of inner iterations converged. In this sense, setting
an inner tolerance is a more robust practice.

Third, it is possible to choose an “optimal” inner tolerance for a flexible method.
One sees that for FBiCGStab the inner tolerance 1e-2 yields the best results in all
the cases, whereas for FGMRES the tolerance is 1e-1. This is consistent with the
observation made in the experiments of flexible QMR [38], which states that the total
solver cost first decreases, then increases as the inner solves are more and more exact.
The “optimal” inner tolerance may be related to the convergence behavior of the inner
iterations. One sees that in Figure 4.1 the relative residual norm of BiCGStab has
a steep decrease at the beginning, until between 1e-1 and 1e-2. This may be the
stopping point when BiCGStab becomes the most effective as an inner solve.

Fourth, the inner-outer iterations (that is, FBiCGStab/BiCGStab and FGM-
RES/GMRES) are often a better alternative to the standard iterations (that is,
BiCGStab and GMRES). In harder problems the standard iterations did not con-
verge but inner-outer iterations did. In fact, the outer iterations converge extremely
fast when setting an appropriate inner tolerance. This behavior means that the pre-
conditioner is strong even though it is inexact.
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Fig. 4.2. Convergence history of FBiCGStab (Algorithm 1), FBiCGStab-R (Algorithm 2), and
FBiCGStab-R2 (a modification of FBiCGStab-R using (3.2) to update αj).

We next study the numerical behavior of Algorithm 2. Figure 4.2 shows an ex-
ample with β = −0.4/h2. We experimented with two preconditioners: (i) fixed: the
default block Jacobi/ILU(0), and (ii) flexible: 20 BiCGStab iterations. The plot
includes the convergence history of FBiCGStab (Algorithm 1), FBiCGStab-R (Algo-
rithm 2), and a modification of FBiCGStab-R (using (3.2) to update αj). To facilitate
presentation, we call the one with modification FBiCGStab-R2. One sees that the
residuals for the three versions were the same at the beginning, until they dropped to
approximately 1e-4 to 1e-5. Afterwards, the trends started to vary. FBiCGStab and
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FBiCGStab-R were able to converge, but FBiCGStab-R2 stagnated. Furthermore, in
case (i) the convergence behaviors for FBiCGStab and FBiCGStab-R were similar,
whereas in case (ii) FBiCGStab-R converged significantly faster. Though not shown,
we verified that the residual norm ρj+1 computed using line 12 of Algorithm 2 was
the same as that computed straightforwardly as (rj+1, rj+1)1/2. Thus, the plotted
histories are reliable. The reason for the surprisingly different convergence behaviors
in case (ii) is unclear.
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Fig. 4.3. Orthogonality of sj and r̄0.

To further understand the numerical instability caused by (3.2), we plot in Fig-
ure 4.3 the absolute value of the inner product (sj , r̄0) normalized by ‖sj‖‖r̄0‖. Only
the result of using preconditioner (i) is shown. One sees that in FBiCGStab-R the
normalized inner product is always below machine precision, whereas in FBiCGStab-
R the normalized inner product shows a trend of increase. In this trend, the loss of
orthogonality was accumulated and prevented the further decrease of rj+1 at some
point.

5. Application. In this section we demonstrate the use of FBiCGStab in the
application PFLOTRAN [18, 19, 21, 22, 23]. PFLOTRAN is a state-of-the-art code
for simulating multiscale, multiphase, multicomponent flow and reactive transport in
geologic media. PFLOTRAN solves a coupled system of mass and energy conserva-
tion equations for a number of phases, including air, water, and supercritical CO2

and a number of chemical components. The code utilizes finite-volume or mimetic
finite-difference spatial discretizations combined with backward-Euler (fully implicit)
timestepping for the flow and reactive transport solves or, optionally, operator split-
ting for the reactive transport. PFLOTRAN is built on the PETSc library [3, 4] and
makes extensive use of PETSc iterative nonlinear and linear solvers.

We present numerical results for two benchmark problems used in [20]. The
governing equations are described by Richards’ equation:

∂

∂t

(
ϕsρ

)
+∇ · ρu = S,
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where ϕ denotes the porosity of the geologic medium, s the saturation (fraction of pore
volume filled with liquid water), ρ the fluid density, S a source/sink term representing
water injection/extraction, and u the Darcy velocity defined as

u = −κκr
µ
∇
(
P − ρgz

)
,

where P denotes fluid pressure, µ viscosity, κ the absolute permeability of the medium,
κr the relative permeability of water to air, g the acceleration of gravity, and z the
vertical distance from a datum. The two benchmark problems are as follows.
Case 1: Cubic domain with a central injection well; 6 time steps. This case models

a 100m × 100m × 100m domain with a uniform effective permeability of 1
darcy and an injection well at the exact center.

Case 2: Regional flow without well near river; 2 time steps. This case models a
5000m × 2500m × 100m region with a river at the eastern boundary.

In our numerical experiments, we ran each test case for a minimum number of time
steps required to obtain a reasonable picture of the basic physics.

BiCGStab has been the preferred linear solver for PFLOTRAN because of its
small memory consumption (compared with that of GMRES) and the empirically
fast convergence. Similar to other Krylov methods, BiCGStab encounters a well-
known scaling difficulty for over 10,000 processor cores because of the bottleneck in
the synchronization of vector inner product calculations. In order to overcome this
difficulty, an improved variant of BiCGStab, namely, IBiCGStab [44], reduces the
five global synchronization points per iteration to one through algorithmic reorga-
nization of the BiCGStab iterations. Recently, in [20], the number of global inner
products was significantly reduced by using Chebyshev iterations as the precondi-
tioner, because Chebyshev requires no inner product calculations. As a convention,
we use IBiCGStab/Chebyshev to denote this combination of the outer iterations and
the preconditioner. An objective of this work is to further improve PFLOTRAN
performance when using an extremely large number of processor cores. FBiCGStab
enables us to explore a wide range of preconditioners, in particular the flexible ones,
to improve over the results obtained in [20].

The analysis and discussion in preceding sections suggest that in order to maintain
the convergence of FBiCGStab, using a strong preconditioner is preferable; that is,
each application of the preconditioner achieves a good inner-residual reduction. This
observation directed us to examine a set of strong preconditioners commonly used in
PFLOTRAN.

Among all preconditioners in our experiments, the multigrid (MG) preconditioner
with carefully selected smoother and coarse-level solver is found to perform best.
Denoted by FBiCGStab/MG, the computational time of this combination improves
over that of IBiCGStab/Chebyshev (reported in [20]) by approximately 30% to 60%.

For steady-state or close to steady-state problems, such as the two cases of PFLO-
TRAN we consider here, the multigrid preconditioner is known to work well on a small
number of processors, but the performance starts tailing off at around 1,000 processor
cores [17]. The difficulty in scaling up the number of processors is that in the coarsest
level the problem is so small that the communication cost outweighs the computa-
tional cost. Here, we cope with this difficulty by (1) limiting the number of multigrid
levels such that each processor core maintains sufficient workload at the coarsest level,
and (2) using an iterative method that employs no or only a small number of inner
product calculations in the coarsest level. Two such coarse-grid solvers we used are
Chebyshev and IBiCGStab/Chebyshev. In the former the iteration matrix does not
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change; thus we call it a fixed MG preconditioner. We call the latter a variable MG
preconditioner.

Experiments were conducted on two computer systems: Intrepid, an IBM Blue
Gene/P supercomputer located at the Argonne Leadership Computing Facility [1],
and Jaguar, a Cray XK6 system located at the Oak Ridge Leadership Computing Fa-
cility [27]. Intrepid has a highly scalable torus network, as well as a high-performance
collective network that minimizes the bottlenecks common in simulations on large,
parallel computers. The current system has 40,960 nodes, each consisting of one 850
MHz quad-core processor and 2GB RAM, resulting in a total of 163,840 cores, 80TB
of memory, and a peak performance of 557 TFlops. Jaguar has 18,688 compute nodes,
each consisting of one AMD 16-core Opteron 6274 processor running at 2.2GHz and
32GB of memory, giving a total of 299,008 cores and a peak performance of 2,628
TFlops.

Table 5.1
BiCGStab and FBiCGStab for PFLOTRAN on Intrepid (IBM Blue Gene/P), Case 1.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

512
(256x256x256) 547 212.8 29 97.2 23 86.4 (11%)

4,096
(512x512x512) 1006 365.1 43 121.3 33 106.1 (12%)

32,768
(1024x1024x1024) 1886 654.3 62 153.7 37 119.1 (23%)

163,840
(1600x1600x640) 2843 308.3 88 81.8 53 65.7 (20%)

Table 5.2
BiCGStab and FBiCGStab for PFLOTRAN on Intrepid (IBM Blue Gene/P), Case 2.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

16,384
(1600x816x320) 844 231.1 33 64.3 22 52.6 (18%)

98,304
(1600x1632x640) 1520 270.5 61 70.0 39 54.7 (22%)

163,840
(1600x1632x640) 1499 169.3 62 52.0 36 40.2 (23%)

Tables 5.1 through 5.4 compare the performance of (1) IBiCGStab/Chebyshev,
(2) BiCGStab with the fixed MG preconditioner, and (3) FBiCGStab with the variable
MG preconditioner on the two benchmark cases and the two supercomputing systems.
The results of IBiCGStab/Chebyshev (columns 2–3) have been reported in [20] and are
used here as the baseline of comparison. For MG preconditioners (columns 4–8), we
used V-cycles and set the maximum levels at 3. All the smoothers (before restriction
and after interpolation) were 2 steps of Chebyshev iterations. The difference between



18 J. CHEN, L.C. MCINNES, AND H. ZHANG

Table 5.3
BiCGStab and FBiCGStab for PFLOTRAN on Jaguar (Cray XK6), Case 1.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

512
(256x256x256) 546 24.2 29 16.8 23 12.7 (24%)

4,096
(512x512x512) 1033 44.1 43 17.4 33 16.0 (8%)

32,768
(1024x1024x1024) 2073 89.0 62 32.8 37 30.3 (8%)

160,000
(1600x1600x640) 2407 52.0 91 24.9 55 22.5 (10%)

Table 5.4
BiCGStab and FBiCGStab for PFLOTRAN on Jaguar (Cray XK6), Case 2.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

1,600
(800x408x160) 411 18.0 20 8.8 20 8.8 (0%)

16,000
(1600x816x320) 829 29.6 30 11.3 22 10.9 (4%)

80,000
(1600x1632x640) 1578 53.1 60 16.7 38 15.0 (10%)

224,000
(1600x1632x640) 1501 20.9 66 16.6 37 14.8 (11%)

the fixed MG and variable MG precondtioners is the coarse-grid solver: 100 Cheby-
shev iterations (CSolve: Cheby, columns 4–5) versus 5 IBiCGStab iterations, each
preconditioned by 20 Chebyshev iterations (Csolve: IBiCGS/Cheby, columns 6–8).
As usual, whenever a Chebyshev iteration is employed, block Jacobi/ILU(0) is ap-
plied as the innermost preconditioner. In our experiments, Chebyshev outperformed
other commonly used smoothers (such as SOR). The reason may be that Chebyshev
uses a small number of GMRES iterations to approximate extreme eigenvalues dur-
ing the solver setup phase, which makes Chebyshev more effective in damping error
modes at various grid levels and results in a more effective MG preconditioner.

Overall, on both machines, (F)BiCGStab with MG preconditioners is shown to be
two to three times faster than IBiCGStab/Chebyshev on a large number of processor
cores. Thus, the focus of our comparison here is how much reduction in execution
time one can achieve by using a flexible preconditioner compared with using a fixed
one. The percentage of reduction in execution time relative to the fixed MG pre-
conditioner is listed in column 8 (% Reduction). As the size of the coarsest grid
increases, the fixed number of iterations used for the coarsest-level solver weakens
the MG preconditioner, resulting in an increased number of outer iterations. Such an
increase is less significant for the variable MG preconditioner because each of its appli-
cations employs 5 IBiCGStab iterations at the coarsest level, giving a more effective
but slightly more costly preconditioner than using Chebyshev alone. For example,
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when the number of cores becomes larger than 30,000, the number of outer iterations
when using the variable MG preconditioner is almost half that of using the fixed MG
preconditioner, leading to a reduction of 10% and 20% in overall execution time on
Jaguar and Intrepid, respectively.

Comparing the results obtained on the two machines, one sees a consistent iter-
ation number (for some grid sizes, a slightly different number of processor cores was
used across machines; this affected the innermost block Jacobi/ILU(0) preconditioner,
thus making the outer iteration numbers slightly different). However, the time im-
provement of using a variable MG preconditioner is significantly different across the
two machines. Because the clock rate of Intrepid is much lower than that of Jaguar,
the solution time on Intrepid is longer. Because the communication network of In-
trepid has lower latency, however, the global synchronization cost of MPI Allreduce

is significantly smaller. We thus achieve better performance improvement on Intrepid
because the variable MG preconditioner requires inner product calculations in the
coarsest grid solves. This phenomenon is not rare in practice and showcases that for a
solver, not only the theoretical convergence matters, but also the machine architecture
plays an important role.

The results of using FBiCGStab-R in place of FBiCGStab were almost the same
in this application. With a stopping criterion of 1e-5 tolerance for the outer linear
solves, the difference in residual norm decrease is unnoticeable. The gain in reducing
synchronization cost is not significant enough because the outer iterations constituted
a very small portion of the total run time. The advantage of FBiCGStab-R will
show when a much smaller tolerance is needed, where it converges faster than does
FBiCGStab.

6. Concluding remarks. BiCGStab has been the de facto method of choice
in many application domains for solving linear systems. Motivated by the challenges
in large-scale scientific applications and extreme-scale architectures that encourage
the use of flexible preconditioners, we analyzed flexible BiCGStab and showed that
the change of the convergence behavior with respect to standard BiCGStab is in ac-
cordance with the inaccuracy in the preconditioning solves. Thus, often a strong
preconditioner is favored in order to successfully apply the method. To this end, we
demonstrated through numerical experiments (including the PFLOTRAN reacting
flow application) that two preconditioners are effective. One is BiCGStab itself, with
a suitably chosen inner tolerance; the other is multigrid, using an efficient iterative
method with a fixed number of inner iterations in the coarsest grid level. These exam-
ples are an effort toward the practical use of FBiCGStab in large-scale applications.

We also derived an alternative but mathematically equivalent version, FBiCGStab-
R, in order to reduce the synchronization cost of the inner product calculations in
FBiCGStab. Experiments showed that FBiCGStab-R is stable, and the stability is
closely tied to the preserved numerical orthogonality in the iterate updates. In gen-
eral, both FBiCGStab and FBiCGStab-R yield similar convergence behavior; however,
sometimes FBiCGStab-R performs surprisingly far better than does FBiCGStab. The
cause of this superior performance is unclear, but it shows that FBiCGStab-R can
be a useful alternative to FBiCGStab even when the synchronization cost is not a
bottleneck of the computations.
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